A refined parametric model for short term load forecasting
نویسندگان
چکیده
منابع مشابه
Combination Model for Short-Term Load Forecasting
Gas demand possesses dual property of growing and seasonal fluctuation simultaneously, it makes gas demand variation possess complex nonlinear character. From previous studies know single model for nonlinear problem can’t get good results but accurately gas forecast were essential part of an efficient gas system planning and operation. In recent years, lots of scholar put forward combination mo...
متن کاملA Hybrid Model for Short-Term Load Forecasting Based on Non- Parametric Error Correction
In this paper, we presented the performance of forecasting model and error correction will affect the accuracy of short-term load forecasting. Least squares support vector machines (LS-SVM) based on improved particle swarm optimization is selected as load forecasting model. Forecasting accuracy and generalization performance of LS-SVM depend on selection of its parameters greatly. Adaptive part...
متن کاملShort - Term Load Forecasting
This paper presents a novel hybrid method for short-term load forecasting. The system comprises of two artificial neural networks (ANN), assembled in a hierarchical order. The first ANN is a multilayer perceptron (MLP) which functions as integrated load predictor (ILP) for the forecasting day. The output of the ILP is then fed to another, more complex MLP, which acts as an hourly load predictor...
متن کاملShort-term Load Forecasting Method
Based on Wavelet and Reconstructed Phase Space Zunxiong Liu, Zhijun Kuang, Deyun Zhang 1.Dept. of Information and Communication Eng, Xi’an Jiaotong University. Xi’an, Shanxi, China. 2.Dept. of Information Eng, East China Jiaotong University. Nanchang, Jiangxi, China Abstract: This paper proposed wavelet combination method for short-term forecasting, which makes merit of wavelet decomposition an...
متن کاملImproved generalized neuron model for short-term load forecasting
The conventional neural networks consisting of simple neuron models have various drawbacks like large training time for complex problems, huge data requirement to train a non linear complex problems, unknown ANN structure, the relatively larger number of hidden nodes required, problem of local minima etc. To make the Artificial Neural Network more efficient and to overcome the above-mentioned p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Forecasting
سال: 2014
ISSN: 0169-2070
DOI: 10.1016/j.ijforecast.2013.07.003